BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

vol. 42

3372-3379 (1969)

Infrared Absorption Spectra of Urea-formaldehyde Initial Condensation Products. II. Dimethylurea

Yoshiyuki Mido*1 and Hiromu Murata

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda, Hiroshima (Received April 10, 1969)

The infrared absorption spectra of symmetric and asymmetric dimethylurea have been observed in the 4000—400 cm⁻¹ region. In order to investigate the amide characteristic bands, the spectra of CH₃NHCONHCH₃ and CH₃NDCONDCH₃ have also been measured in the solid and liquid states, and in solutions. The in-plane normal vibrations of these molecules have been calculated. As a result of our measurements and calculations, it has been found that: (1) The contribution of the polar resonance structure of asymmetric dimethylurea is small compared with that of symmetric dimethylurea, and molecular geometry contributes to the formation of hydrogen bonding. (2) From the position of the amide bands, the molecular configuration of symmetric dimethylurea is the "trans" form as well as that of methylurea. (3) The results of normal coordinate analysis show a good agreement with that observed within an average deviation of 2.6%

In a previous paper,¹⁾ we reported the vibrational spectra of methylurea (MMU) as one of urea-formaldehyde initial condensation products; we also undertook a normal coordinate analysis of this molecule in order to determine the vibrational assignments. The polar resonance structure of the H-N-C=O system has also been discussed on the basis of the assignments specified for the amide characteristic bands,²⁾

As a continuation of that research, we have now extended our study to the vibrational spectra of symmetric and asymmetric dimethylurea (referred to as s-DMU and a-DMU). The observed bands of DMU have been assigned by comparing the spectra of MMU and by observing the changes in spectra according to the state of the aggregation in which the substance has been measured. The normal coordinate treatments of s-DMU have been made in order to give a basis for the assignments.

Becher and Griffel have observed the infrared

spectra of s-DMU³) and methylenediurea⁴) in the NaCl region, and some of the spectral bands have been assigned empirically.

Experimental

Materials. The s-DMU was obtained from Wako Pure Chemical Industries, Ltd., and was purified by recrystallization from a chloroform or an acetone solution. It had a mp of 106°C (lit, 5) 107°C). The a-DMU was synthesized by adding dimethylamine to nitrourea, 6) and it was purified from a chloroform solution. It had a mp of 181.5—182.2°C (lit, 5) 182°C).

The N-deuterated compounds of these samples were obtained from simple exchange with D₂O at room temperature; the excess of D₂O was evaporated in vacuum after the exchange reaction had been completed.

Infrared Spectra. The infrared spectra were measured in the 4000—400 cm⁻¹ region with a Hitachi EPI-2G Infrared Grating Spectrophotometer. The spectrometer was calibrated with standard polystyrene film H₂O vapor. The spectra of s-DMU and s-DMU-d*² were measured in the solid and liquid states and in so-

^{*1} Present address; Department of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada, Kobe.

¹⁾ Y. Mido and H. Murata, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sect.), 90, 254 (1969).

²⁾ T. Miyazawa, T. Shimanouchi and S. Mizushima, J. Chem. Phys., 24, 408 (1956); T. Miyazawa, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sect.), 76, 341, 821, 1018 (1955), ibid., 77, 171, 321, 526, 619 (1956).

H. J. Becher and F. Griffel, Naturwissenschaften, 43, 467 (1956).

^{4),} H. J. Becher, Chem. Ber., 89, 1593 (1956).

^{5) &}quot;Handbook of Chemistry and Physics," ed. by R. C. Weast, The Chemical Rubber Co., Ohio (1966), p. C-591.

⁶⁾ F. Kurzer, "Organic Syntheses," 32, 61 (1952).

^{*2} The d means N-deuterated compound.

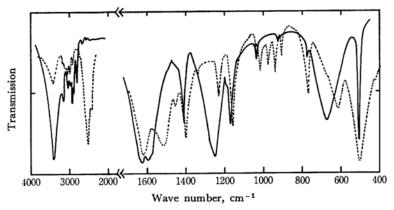


Fig. 1. Infrared spectra of s-DMU (solid line) and s-DMU-d (broken line) in the solid state.

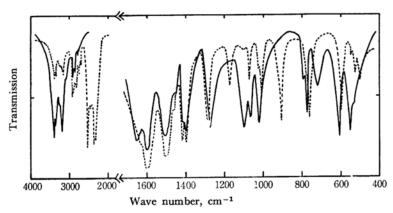


Fig. 2. Infrared spectra of a-DMU (solid line) and a-DMU-d (broken line) in the solid state.

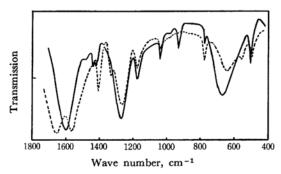


Fig. 3. Infrared spectra of s-DMU in liquid state (broken line) and its quenched sample (solid line).

lutions. The solid-state spectra were taken in a KBr disk and in Nujol mull;*3 they are shown in Fig. 1. The liquid-state spectra in a capillary heated at 107—110° C and the spectra of the sample cooled from the

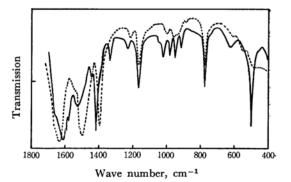


Fig. 4. Infrared spectra of s-DMU-d in liquid state (broken line) and its quenched sample (solid line).

molten liquid in a capillary (the quenched sample) are shown in Figs. 3 and 4, in which the quenched sample spectra differ from the solid-state ones. The spectra of a-DMU and a-DMU-d were also measured in the solid state and in solutions; they are shown in Fig. 2. The spectra of s- and a-DMU dissolved in H₂O and D₂O are shown in Figs. 6 and 7 respectively. The observed frequencies are summarized in Tables 5 and 6.

^{**3} The preparations of KBr disk exchanged the deuterium of d-compounds for normal hydrogen and weakened the strength of $\nu(ND)$, but in Nujol mull such a phenomenon was observed little.

TABLE 1. SYMMERTRY COORDINATES

Symmet specie		Symmetry coordinates*	Vibrational mode	Abbr.
A ₁	S ₁	$(R_3+R_4-2R_1+R_{13}+R_{12}-2R_{11})/\sqrt{12}$	CH ₃ antisym. stretching	ν _a (CH)
	S_2	$(R_3+R_4+R_1+R_{12}+R_{13}+R_{11})/\sqrt{6}$	CH ₃ sym. stretching	$\nu_{\rm s}({ m CH})$
	S_3	$(2\alpha_6-\alpha_3-\alpha_5+2\varepsilon_6-\varepsilon_2-\varepsilon_4)/\sqrt{12}$	CH ₃ antisym. deformation	$\delta_{\rm a}({ m CH_3})$
	S_4	$(\alpha_{\rm I} - \alpha_{\rm II} + \varepsilon_{\rm I} - \varepsilon_{\rm II})/\sqrt{12}^*$	CH ₃ sym. deformation	$\delta_{\rm s}({ m CH_3})$
	S_5	$(2\alpha_1-\alpha_2-\alpha_4+2\varepsilon_1-\varepsilon_3-\varepsilon_5)/\sqrt{12}$	CH ₃ rocking	$\delta_{ m r}({ m CH_3})$
	S_6	(R_8)	CO stretching	$\nu(CO)$
	S_7	$(R_{\epsilon}+R_{10})/\sqrt{2}$	NH sym. stretching	$\nu_{\rm s}({ m NH})$
	S_8	$(R_5+R_7)/\sqrt{2}$	CN ₂ sym. stretching	$v_{\rm s}({ m CN_2})$
	S_9	$(R_2+R_9)/\sqrt{2}$	CH ₃ -N sym. stretching	$v_s(C'N)$
	S_{10}	$(eta_2\!-\!eta_3\!+\!\delta_3\!-\!\delta_2)/2$	NH sym. deformation	$\delta_{\rm s}({ m NH})$
	S_{11}	$(2\beta_1 - \beta_2 - \beta_3 + 2\delta_1 - \delta_2 - \delta_3)/\sqrt{12}$	CH ₃ -NC deformation	$\delta_{\rm s}({ m C'NC})$
	S_{12}	$(2\gamma_1-\gamma_2-\gamma_3)/\sqrt{6}$	NCN sym. deformation	$\delta_{\rm s}({ m NCN})$
B ₂	S ₁	$(R_3+R_4-2R_1+2R_{11}-R_{12}-R_{13})/\sqrt{12}$	CH ₃ antisym. stretching	va(CH)
	S_2	$(R_3+R_4+R_1-R_{11}-R_{12}-R_{13})/\sqrt{6}$	CH ₃ sym. stretching	$\nu_{\rm s}({ m CH})$
	S_3	$(2\alpha_6-\alpha_3-\alpha_5-2\varepsilon_6+\varepsilon_2+\varepsilon_4)/\sqrt{12}$	CH ₃ antisym. deformation	$\delta_{\rm a}({ m CH_3})$
	S_4	$(\alpha_{\rm I}-\alpha_{\rm II}-\varepsilon_{\rm I}+\varepsilon_{\rm II})/\sqrt{12}$ *	CH ₃ sym. deformation	$\delta_{ m s}({ m CH_3})$
	S_{δ}	$(2\alpha_1-\alpha_2-\alpha_4-2\varepsilon_1+\varepsilon_3+\varepsilon_5)/\sqrt{12}$	CH ₃ rocking	$\delta_{ m r}({ m CH_3})$
	S_6	$(R_6-R_{10})/\sqrt{2}$	NH antisym. stretching	$\nu_a(NH)$
	S_7	$(R_5-R_7)/\sqrt{2}$	CH ₂ antisym. stretching	$\nu_{\rm a}({ m CN_2})$
	S_8	$(R_2-R_9)/\sqrt{2}$	CH ₂ -N antisym. stretching	$\nu_a(C'N)$
	S_9	$(oldsymbol{eta_2}\!-\!oldsymbol{eta_3}\!-\!oldsymbol{\delta_3}\!+\!oldsymbol{\delta_2})/2$	NH antisym. deformation	$\delta_{\rm a}({ m NH})$
	S_{10}	$(\gamma_2-\gamma_3)/\sqrt{2}$	NCO deformation	δ (NCO)
	S_{11}	$(2\beta_1 - \beta_2 - \beta_3 - 2\delta_1 + \delta_2 + \delta_3)/\sqrt{12}$	CH ₃ -NC antisym. deformation	$\delta_a(C'NC)$

^{*} $\alpha_{\rm I} = \alpha_3 + \alpha_5 + \alpha_6$, $\alpha_{\rm II} = \alpha_1 + \alpha_2 + \alpha_4$, $\varepsilon_{\rm I} = \varepsilon_2 + \varepsilon_4 + \varepsilon_6$, $\varepsilon_{\rm II} = \varepsilon_1 + \varepsilon_3 + \varepsilon_5$

Normal Coordinate Treatment

The frequency calculations for s-DMU were made by means of Wilson's GF matrix method.⁷⁾ The trans symmetric plane model (C2v) was adopted except for two hydrogen atoms attached to each of the two methyl carbon atoms (C')*4 (see Fig. 5). The normal vibrations are classified into the 23 inplane modes $(A_1:12, B_2:11)$ and the 13 out-ofplane modes (A₂: 6, B₁: 7), the A₂ species of which is infrared-inactive. The normal coordinate treatment was made for the in-plane vibrations using the internal coordinates shown in Fig. 5 and the symmetry coordinates given in Table 1. The potential function used is that of the Urey-Bradley type,8) and the structural parameters (Table 2)*5 and the force constants (Table 3) are the same as those of the MMU transferred directly from urea, 9) N-methylacetamide,10) and N-methylformamide.11) The observed and calculated frequencies are listed in Table

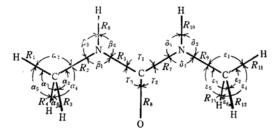


Fig. 5. The internal coordinate of s-DMU.

4, together with the main potential energy distributions (P.E.D.).¹²⁾ The frequencies show a good agreement with the observed values (an average deviation of 2.6%),*6 indicating that the transferabilities of the force constants and the potential function are sufficient for this molecule. However, some of the calculated values deviate considerably from the observed values. The deviations of $\delta_s(\text{CH}_3)$, $\delta_a(\text{CH}_3)$, $\delta_r(\text{CH}_3)$, and $\nu(\text{C'N})$ for s-DMU are similar to those for MMU;¹⁾ this probably

E. B. Wilson, J. Chem. Phys., 7, 1047 (1939);
 9, 76 (1941).

^{*4} C' denotes the methyl carbon atoms.

⁸⁾ T. Shimanouchi, J. Chem. Phys., 17, 245, 734, 848 (1949).

^{*5} The structural analysis has not been reported for s-DMU.

⁹⁾ A. Yamaguchi, T. Miyazawa, T. Shimanouchi and S. Mizushima, Spectrochim. Acta, 10, 170 (1957).

¹⁰⁾ T. Miyazawa, T. Shimanouchi and S. Mizushima, J. Chem. Phys., 29, 611 (1958).

¹¹⁾ I. Suzuki, This Bulletin, 35, 540 (1962).

¹²⁾ Y. Morino and K. Kuchitsu, J. Chem. Phys., 20, 1809 (1952); I. Nakagawa, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sect.), 74, 243 (1953).

^{*6} In the case of MMU; 2.3%.

TABLE 2. STRUCTURAL PARAMETERS*4,*5

C'-N	1.47Åa)	C-N	1.335Åb)	C-O	1.262Åb)
C'-H	1.09Å©	N-H	1.000Åe>		
α _i , ε _i *	109°28′e)	$\beta_i, \gamma_i, \delta_i^{**}$	120°00′e)		
		Table 3. Force of	constants (md/Å)		
K(CH)	4.42a)	H(NCN)	0.72b)	$F(N\cdots N)$	0.613b
K(C'N)	3.15c)	H(NC'H)	0.28c)	$F(N\cdots H)$	0.52c)
K(CN)	5.50°	H(HC'H)	0.45c)	$F(H \cdots H)$	0.030
K(NH)	6.1d)	H(CNC')	0.2a)	$F(\mathbf{C}\cdots\mathbf{C}')$	0.3a)
K(CO)	6.5b)	H(CNH)	0.35^{a}	$F(\mathbf{C}\cdots\mathbf{H})$	0.5^{a}
		H(C'NH)	0.15a)	$F(C'\cdots H)$	0.5a)
		H(OCN)	0.12b)	$F(O \cdots N)$	1.566b
		H(HNH)	0.38b)	$F(H\cdots H)$	0.06)

- * The bond angles around the C' atom.
- ** The bond angles around the C and N atoms.

 $0.0\,\mathrm{mdÅ^{e}}$

- a) N-Methylacetamide, Ref. 10. b) Urea, Ref. 9. c) N-Methylformamide, Ref. 11.
- d) Methylamine, A. Yamaguchi, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sect.), 80, 1105 (1959).
- e) Assumption.

κ

means that the corresponding force constants are not sufficiently good. On the other hand, the difference between the deviation for s-DMU and that for MMU (-0.4%) of the amide III bands may be attributed to the steric or electronic effect of methyl groups.¹⁾ The deviation of $\delta(NCN)$ for s-DMU is more than that for MMU (0.2%), but the deviation of $\delta(NCO)$ for s-DMU is less than that for MMU (8.1%). The same tendency was found in methylenediurea.¹³⁾ Accordingly, the geometry of the molecule may strongly affect these vibrations.

The numerical calculations in the present treatment of normal vibrations were carried out with a HITAC 103 computer (Hitachi Ltd.) at Hiroshima University.

Results and Discussion

There are many points of similarity between the spectra of s-DMU and MMU,¹⁾ but those of a-DMU differ from those of s-DMU and MMU in the numbers of the spectral bands (see Figs. 1 and 2). If the bonding of s-DMU as a whole is analogous to that of urea,^{9,14-16)} the s-DMU molecule can be expected to possess the considerable double-bond character of the C-N bonds and to have an approximately plane structure. Then, s-DMU will have three possible configurations with respect to the relative positions of two imides and a carbonyl group,

the cis-cis, cis-trans, and trans-trans configurations of which the cis-trans one (C_s symmetry) is less expected than the other ones (C_{2v} symmetry).

Miyazawa and his co-workers investigated the infrared spectra of various monosubstituted amides^{2,10)} and of diketopiperazine,17) and concluded that the characteristic amide bands of the trans-CONH group are different from those of the cis-CONH group. Lane and his colleagues18) showed in their study of the methylthiourea metal complexes that the molecular form of this ligand exists in the trans form in comparison with the trans- and cis-thioamide. Generally the amide frequencies are markedly affected by hydrogen-bonding effects, so considerable shifts can occur on passing from the solid to a solution; moreover, the shifts are often very useful for assigning the observed bands.2,19) A similar consideration of the amide bands of s-DMU will provide information regarding the configuration of s-

Amide I, II, and III Bands. In s-DMU, the amide I, II, and III bands usually observed in 1700 —1250 cm⁻¹ region can be related to $\nu(CO)$, $\nu(CN)$, and $\delta(NH)$, as is shown in the P.E.D. of Table 4, but they are not pure vibrations. The amide I band observed at 1625 cm⁻¹ has the greatest contribution of $\nu(CO)$ and a smaller one of $\delta(NH)$, since the band shows a small frequency shift on deuteration. On the other hand, the amide II

¹³⁾ Y. Mido and H. Murata, to be published.

¹⁴⁾ R. D. Waldron and R. M. Badger, J. Chem. Phys., 18, 566 (1950).

¹⁵⁾ P. Vaughan and J. Donohue, Acta Cryst., 5, 530 (1967).

E. R. Andrew and D. Hyndman, Proc. Phys. Soc. (London), 66A, 1187 (1953).

¹⁷⁾ K. Fukushima, Y. Ideguchi and T. Miyazawa, This Bulletin, 37, 349 (1964).

¹⁸⁾ T. J. Lane, A. Yamaguchi, J. V. Quagliano, J. A. Ryan and S. Mizushima, *J. Am. Chem. Soc.*, **81**, 3824 (1959).

¹⁹⁾ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," John Wiley & Sons, Inc., New York (1958), p. 203.

Table 4. Observed (v_0) and calculated (v_0) frequencies (in cm $^{-1}$) and potential energy distributions (P.E.D. in %)

						.					
			CH_3	CH3NHCONHCH3	,H,		CH ₃]	CH3NDCONDCH3	H ₃	(a)	TIE
		ν0	$\nu_{ m e}$	√ 8 <i>P</i>	P.E.D. (%)	°°,	»e	Δa)	P.E.D. (%)	ì	
Aı	ν,	3485d)	3482	0.0	v(NH)100	2503	2544	+1.6	v(ND)100	1.39	1.37
	V_2	2980	5966	-0.7	v(CH)100	3000	5966	-1.1	v(CH)99	0.99	1.00
	V3	2930	2879	-1.7	v(CH)99	2950	2880	-2.5	v(CH)99	0.99	0.99
	<i>V</i> 4	1625	1628	+0.2	ν(C=O)46, ν(CN)23 δ(NCN)16, δ(NH)15	1620	1593	-1.7	ν(C=O)52, ν(CN)23 δ(NCN)16	1.00	1.02
	V_5	1455	1484	+2.0	δ(CH ₃)85, δ _r (CH ₃)11	1455	1483	+1.9	δ(CH ₃)89, δ _r (CH ₃)10	1.00	1.00
	Ve	1410	1472	+4.4	$\delta_{ m s}({ m CH_3})96$	1397	1470	+5.2	$\delta_{ m s}({ m CH_3})94$	1.00	1.00
	7,4	1328	1423	+7.1	δ(NH)52, ν(CN)24 ν(C'N)13, ν(C=O)8	941	927	-1.5	$\delta(\mathrm{ND})$ 55, $\nu(\mathrm{C'N})$ 25 $\delta_{\mathrm{r}}(\mathrm{CH_3})$ 9	1.42	1.54
	v _s	1170	1142	-2.4	$\delta_{\rm r}({\rm CH_3})46, \ \nu({\rm C=O})25$ $\delta({\rm CH_3})7$	1160	1127	-2.8	$\delta_{\rm r}({ m CH_3})50, \ \nu({ m C'N})22 \ \nu({ m C=O})11$	1.01	1.01
	v ₉	11324)	1125	9.0-	ν(C'N)62, ν(CN)9 δ(NH)9	1231	1294	+5.1	$\nu({\rm C'N})30, \ \nu({\rm CN})30 \ \delta({\rm ND})30, \ \delta_{\rm r}({\rm CH}_{\rm a})7$	0.94	0.87
	V ₁₀	086	963	-1.7	$\nu(\text{CN})20, \delta_{\rm r}(\text{CH}_{\rm s})35$ $\nu(\text{C=O})15$	226	961	-1.6	$\nu(\text{CN})24$, $\nu(\text{C=O})25$ $\delta_r(\text{CH}_3)24$, $\delta(\text{ND})7$	1.00	1.00
	ν11	504	461	-8.5	δ(NCN)46, ν(C'N)20 ν(CN)20, δ(C'NC)9	490	447	-8.8	8(NCN)46, v(CN)20 v(C'N)19, 8(C'NC)10	1.03	1.03
	V ₁₂		202		δ(C'NC)78, δ(NCN)22		200		δ(C'NC)77, δ(NCN)23		1.01
B	ν13	3485d)	3480	0.0-	ν(NH)100	2448	2451	+0.0	v(ND)100	1.42	1.37
	V14	2980	5966	-0.7	v(CH)100	3000	5966	-1.1	v(CH)99	0.99	1.00
	V15	2930	2879	-1.7	۷(CH)99	2950	2880	-2.5	v(CH)99	0.99	0.99
	V18	1596	1570	-1.6	$\nu(\text{CN})61$, $\delta(\text{NH})30$ $\delta(\text{NCO})6$	1510	1534	+1.6	v(CN)76, 8(ND)10 8(NCO)9	1.06	1.02
	V17	1455	1483	+1.9	$\delta(\mathrm{CH_3})86,\ \delta_\mathrm{r}(\mathrm{CH_3})8$	1455	1478	+1.6	$\delta(CH_3)81$, $\delta(CN)7$	1.00	1.00
	V18	1410	1469	+4.2	$\delta_{ m s}({ m CH_3})100$	1397	1469	+5.2	$\delta_{\rm s}({\rm CH_3})90, \ \nu({\rm C'N})7$	1.01	1.00
	V19	1266	1311	+3.6	$\delta(NH)63$, $\nu(CN)31$	941	925	-1.7	δ(ND)56, ν(C'N)36	1.35	1.42
	ν_{20}	1170	1117	-4.5	δ _r (CH ₃)72, ν(C'N)12	1160	1112	-4.1	$\delta_{\rm r}({ m CH_3})76, \ \nu({ m C'N})8$ $\delta({ m CH_3})8$	1.01	1.00
	V21	1037	1000	-3.6	$\nu(C'N)78, \delta_r(CH_3)12$	1018	1047	+2.9	v(C'N)47, δ(ND)36 v(CN)13	1.02	96.0
	V22	672	650	-3.3	δ(NCO)65, δ(C'NC)23	620	641	+3.4	δ(NCO)67, δ(C'NC)25	1.08	1.01
	V23		282		δ(C'NC)72, δ(NCO)29		281		δ(C'NC)70, δ(NCO)27		1.00
			:								

a) Percent deviation: $A = [(v_0 - v_0)/v_0] \times 100$. b) Ratio v_0 of s-DMU to v_0 of s-DMU-d: $I = [v_0(s\text{-DMU})/v_0(s\text{-DMU-d})]$. c) Ratio v_0 of s-DMU to v_0 of s-DMU-d: $II = [v_0(s\text{-DMU})/v_0(s\text{-DMU-d})]$. d) v_0 in chloroform solution; in v_1 , v_0 for free molecule.

Table 5. Observed frequencies (in cm⁻¹) of sym-dimethylurea

	(1) CH ₃ N	HCONH	CH ₃			(II) Cl	H ₃ NDC	ONDCH ₃	
Solid	Quenched sample	l Liquid	CHCl ₃ concd.	soln.a) dil.	Assign.	Solid	Quenched sample	Liquid	CHCl ₃ soln.	Assign.
			3485	3485						
3360	3375	3360	3385	3402	$\nu(NH)$	3000	3000		3005	
3165	3190)		2950	2955	2955	2955	(CH)
3040	3060)			2908		2885	$\nu(CH)$
2980	2958	2960	3015	3015	·/(CII)		2805		2800)	
2930	2908			2915	$\nu(CH)$	2695	2680	2660	2654	
	2815	2815	2820	2820)		2503	2485		2500	$\nu(ND)$
1625	1505	1653	1628	1673	amide I	2448	2450	2450	2448)	
1569	1597	1563	1582	1553	amide II	1620	1609	1633	1622	amide I'
1455	1441		1450	1450	$\delta_{ m a}({ m CH_3})$	1510	1523	1498	1500	amide II'
1410	1421	1410	1414	1413	$\delta_{ m s}({ m CH_3})$	1455	1442			$\delta_{ m a}({ m CH_3})$
		1331	1328	1326	amide III	1397	1420	1401	1401	$\delta_{\rm s}({ m CH_3})$
1266	1269	1266	1273	1253	amide III	1231	1235	1219		v(C'N)
1170	1176	1173	1173	1170	$\delta_{ m r}({ m CH_3})$	1160	1166	1167	1164	$\delta_{\rm r}({ m CH_3})$
		1154	1132		v(C'N)	1018	1026	1000		$\nu(C'N)$
1037	1040	1040	1043	1042	v(C'N)	977	983	958		$\nu(CN)$
980					v(CN)	941	949	934		amide III
925	929	880	915b)		$\delta_{\rm r}({ m CH_3})_{ m o}$	906	916	898		$\delta_{\rm r}({ m CH_3})_{ m o}$
772	773	773	772b)		amide VI	769	772	773		amide VI
672	672	632	654b)		amide V, IV	620	624	625		amide IV
		562	564	557	amide V					
504	501	504	508	501	δ(NCN)	490	500	497	495	δ (NCN)

a) Concd. and dil. mean concentrations of 0.5 and 0.06 mol/l respectively.

Table 6. Observed frequencies (in cm⁻¹) of asym-dimethylurea

(CH ₃)	NCONH ₂	(CH ₃) ₂ NCOND ₂	Assignment	(CH ₃) ₅	NCONH ₂	(CH ₃) ₂ NCOND ₂	Assignment
Solid	CHCl ₃ soln.	Solid	Assignment	Solid	CHCl ₃ soln.	Solid	Assignment
3400	3545)		1273		1287	ν(C'N)
3355	3443	{	$\nu(NH)$			1172	$\delta(\mathrm{ND_2})$
3197	3200)		1097	1076		$\delta_{ m r}({ m NH_2})$
2925	2980	2920		1067	1059	1072	$\delta_{ m r}({ m CH_3})$
2857	2943	2960	$\nu(CH)$	1022	1014	1008	$\nu(CN)$
2800	2873	2800				908	$\delta_{ m r}({ m ND_2})$
		2546		793		793	
		2375 2343	$\nu(ND)$	773	768ъ>	760	amide VI and VI'
1655	1657	1600	amide I	720			$\pi(\mathrm{NH_2})$
1600	1591		and I' δ(NH ₂)	604	594	597	amide IV and IV'
1510	1485	1510	amide II	552	517	528	δ (NCN)
1310	1403	1310	and II'			500	$\pi(ND_2)$
1450	1452	1450	$\delta_{ m a}({ m CH_3})$,
1412	1200	1415	S(CH)				
1400	1398	1399	$\delta_{ m s}({ m CH_3})$				

a) 0.09 mol/l solution.

band at 1596 cm⁻¹ has the contribution of $\nu(CN)$ mainly, but that of $\delta(NH)$ is not negligible, since on deuteration the band shifts to 1510 cm⁻¹ (amide II' band*⁷).

The amide III band at $1266\ cm^{-1}$ has the main

b) CH₃CN solution.

b) Acetone solution.

^{*}⁷ The prime means the amide band on the d-compounds.

TABLE 7.	CHARACTERISTIC	AMIDE	FREQUENCIES	FOR	UREA	DERIVATIVES	(in	cm ⁻¹)

Amide band		I	II		III
Methylurea	Solid	1651	1575	1353	
(MMU)	Liquid	1663	1550	1346	
, ,	Solution				
	CH₃CN	1680	1516	1325	
	CHCl ₃	1679	1509	1338	
sym-Dimethylurea	Solid	1625	1596	-	1266
(s-DMU)	Liquid	1653	1562	1331	1266
	Solution				
	CH₃CN	1678	1546	1320	1259
	CHCl ₃	1673	1553	1326	1253
sym-Diethylurea*	Solid	1638	1598		1268
(s-DEU)	Liquid	1635	1547	1320	1252
	Solution				
	CH ₃ CN	1672	1535	1330	1242
	CHCl ₃	1660	1531	1320	1235

^{*} Unpublished data.

contribution of $\delta(NH)$, together with the additional ones of $\nu(CN)$ and $\nu(C'N)$. Contrary to the expectation of a strong peak from *trans* amides,^{2,10)} the amide III' band is observed at 941 cm⁻¹ as a weak one. The reason for this may be that there is a considerable mixed-contribution of $\nu(C'N)$ to the band.

In the spectra in the liquid and solutions, two noticeable bands appear newly near 1330 and 560 cm⁻¹. The former is assigned to the amide III band because: (1) Figs. 6 and 7 illustrate the spectra of both DMU dissolved in water, but in s-DMU the marked band disappears in a D₂O solution, and in a-DMU, even in a H₂O solution. (2) In the solid-state spectra for s-DMU, the strong amide III band is likely to have a shoulder band towards a higher frequency. (3) The investigation of the N-H stretching region in s-DEU²⁰ can not show the possibility of the rotational isomer.²¹) (4) The spectra in MMU do not show the corresponding bands (see Table 7).

From Table 5, it can be found that the amide I band decreases and the II band increases in frequency on passing along the series solution, liquid, solid, and quenched sample (in the quenched sample, the two bands overlap). This can be explained by the fact that the contribution of the polar resonance structure increases on passing along this series. The changes in the frequencies of the amide bands with the change in state are shown in Table 7 and compared with those of analogues, where similar tendencies are found in all. Accordingly, from the positions of the amide bands, the configuration of s-DMU as well as that of MMU is concluded to be the "trans-trans" form.

On the other hand, as the a-DMU molecule does not include the -CO-NH- group, the polar resonance structure may contribute less than that for s-DMU. In a-DMU, the isotopic shift from the amide II band to the II' band is very little, but in s-DMU, it is quite large (86 cm⁻¹) and the amide II' bands in s- and a-DMU are observed at the same positions. There is a similar relation between s- and a-DEU²⁰); these questions were discussed in a previous paper.¹⁾

It can be concluded that the contribution of the polar resonance structure of the asymmetric form is smaller than that of the symmetric form, since the molecular geometry affects the formation of hydrogen-bondings and since the contribution of $\nu(CN)$ to the amide II band in the asymmetric form is larger than that in the symmetric form.

NH₂ Deformation Vibrations. In a-DMU, the ratios of the NH₂ band to the ND₂ band are 1.37 and 1.21 for $\delta(\text{NH}_2)$ and $\delta_r(\text{NH}_2)$ respectively. When we multiply a ratio of $\delta(\text{ND}_2)$ to $\delta(\text{NH}_2)$ by a ratio of $\delta_r(\text{ND}_2)$ to $\delta_r(\text{NH}_2)$ such as the product rule, the product values are regularly within 1.67±0.02; urea: 1.69,9),*8 MMU: 1.66,1 a-DMU; 1.66 and a-DEU: 1.68.20)

Amide IV, V, and VI Bands and δ (NCN). The amide IV, V, and VI bands are related to δ (NCO), out-of-plane; π (NH), and π (CO) respectively.^{2,10,19}) In s-DMU, three amide bands and δ (NCN) can be predicted in the region from 800 to 400 cm⁻¹, in which the band at 672 cm⁻¹ can easily be assigned to the amide V band because of its breadth and susceptibility to a change of state, while the band at 772 cm⁻¹ can be assigned to the

²⁰⁾ Y. Mido and H. Murata, to be published.

²¹⁾ I. Suzuki, M. Tsuboi, T. Shimanouchi and S. Mizushima, Spectrochim. Acta, 16, 471 (1960).

^{*8} In urea, there are two ratios for A₁ and B₂ species concerned with these vibrations and this value is the average of these ratios.

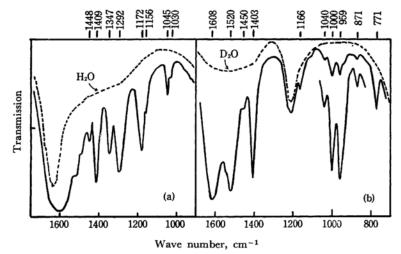


Fig. 6. Infrared spectra of s-DMU dissolved in (a) H₂O and (b) D₂O.

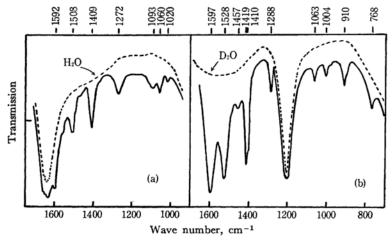


Fig. 7. Infrared spectra of a-DMU dissolved in (a) H₂O and (b) D₂O.

VI band because this band appears at a fixed position in the spectra of urea derivatives and because the band is hardly affected at all by deuteration. There are three bands observed in this region; the position of the V band is higher than that in MMU by 72 cm⁻¹, while the IV band in MMU has been assigned to 653 cm⁻¹; in s-DMU, however, the IV band is not observed in this position. Therefore, it may be considered that the IV band in s-DMU is covered with the V band and, on deuteration, appears at 622 cm⁻¹ because the V band shifts toward a lower frequency side. The band at 504 cm⁻¹ can be assigned to the undecided vibration, δ (NCN). In a-DMU, the bands at 773, 720, 604, and 552 cm⁻¹ are associated with the amide VI band, $\pi(NH_2)$, the amide IV band and $\delta(NCN)$

respectively.

The Other Bands. In s-DMU, the bands at 1455, 1410, 1170, and 925 cm⁻¹ (in a-DMU, the bands at 1450, 1412 and 1400, and 1067 cm⁻¹) are assigned to $\delta_a(\text{CH}_3)$, $\delta_s(\text{CH}_3)$, $\delta_r(\text{CH}_3)_4$, and $\delta_r(\text{CH}_3)_o$ respectively by comparing the vibrational frequencies of the related compounds of the CH₃ group attached to the nitrogen.²⁾ In s-DMU-d, the band at 1231 cm⁻¹ corresponds to the band at 1212 cm⁻¹ in s-DEU-d²⁰⁾ and can be assigned to $\nu(\text{C}'\text{N})$ of A₁, but in s-DMU and s-DEU there are no corresponding bands in this region. The weak bands at 1037 and 980 cm⁻¹ in s-DMU and at 1018 and 977 cm⁻¹ in s-DMU-d are assigned to the $\nu(\text{C}'\text{N})$ of B₂ and the $\nu(\text{CN})$ of A₁ respectively.